
product is required for this regulated release.
Similar to inactive (25), tyramine increas-

es initial cocaine responsiveness in pero flies.
Exposure of tyramine-fed pero flies to 35 mg
of cocaine induced behaviors normally seen
in control flies exposed to 75 mg (Fig. 4).
Thus, although long-term increase of tyra-
mine levels can affect initial cocaine respon-
siveness, it is not sufficient for sensitization
in flies lacking normal per function.

A unifying feature of most genes that
regulate circadian rhythmicity in Drosophila
and vertebrates is the PAS dimerization do-
main, common to a subset of basic helix-
loop-helix transcription factors (26, 27).
Within the circadian cycle, CLOCK/CYCLE
heterodimers activate per transcription,
whereas PER/TIM heterodimers inhibit the
activity of CLOCK/CYCLE (28–30). We
find that mutations in per, clock, and cycle
share the same cocaine phenotype: a deficien-
cy in the ability to sensitize after one or more
drug exposures. This similarity leads us to
suspect that as in circadian behaviors, these
genes are functioning in a common pathway.

In contrast to the above mentioned genes,
the timo mutant showed normal cocaine re-
sponses. The implication of this finding is two-
fold. First, there must be an as yet unidentified
PER binding partner that is specifically in-
volved in regulation of drug responsiveness.
Second, drug responsiveness is likely regulated
by per expression in a set of cells distinct from
those involved in circadian function. In timo

mutants, PER levels are constitutively low (19,
20); if the same TIM-containing cells were
involved in circadian and cocaine responses,
timo flies should not sensitize.
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Dynamical Role of Predators in
Population Cycles of a Forest
Insect: An Experimental Test

P. Turchin,1* A. D. Taylor,2 J. D. Reeve3

Population cycles occur frequently in forest insects. Time-series analysis of
fluctuations in one such insect, the southern pine beetle (Dendroctonus fron-
talis), suggests that beetle dynamics are dominated by an ecological process
acting in a delayed density-dependent manner. The hypothesis that delayed
density dependence in this insect results from its interaction with predators was
tested with a long-term predator-exclusion experiment. Predator-imposed
mortality was negligible during the increase phase, grew during the year of
peak population, and reached a maximum during the period of population
decline. The delayed nature of the impact of predation suggests that pre-
dation is an important process that contributes significantly to southern
pine beetle oscillations.

Ecologists have been trying to solve the puz-
zle of population cycles for at least three-
quarters of a century (1). One class of eco-

logical system that seems particularly prone
to population oscillations is insects attacking
forest trees (2, 3). Because these insects cause

Fig. 4. Tyramine feeding increases initial co-
caine responsiveness of per o flies but does not
restore sensitization. per o flies were fed on
instant food (Carolina Biologicals, Burlington,
NC) with or without tyramine (20 mg/ml) for 2
days (0 mg/ml tyramine, n 5 81, 73; 20 mg/ml
tyramine, n 5 73, 57). Flies were exposed to
the indicated amounts of volatilized cocaine
and assayed as in Fig. 3.
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widespread economic damage, the causes of
their outbreaks have been a focus of intensive
research. Despite this effort, however, the
biological mechanisms that drive oscillations
are not yet well understood even in the best-
studied systems (2, 4). Here we present re-
sults of a long-term field experiment de-
signed to test the hypothesis that cycles in
one forest insect, the southern pine beetle
(SPB) Dendroctonus frontalis, are driven by
the beetle’s population interaction with its
predators (we use the term “predators” in the
broad sense that includes parasitoids, but not
pathogens).

During the 1980s, SPB outbreaks in
pine forests of the southern United States
were thought to be driven by exogenous
(density-independent) factors, namely,
fluctuations in climate (5, 6 ). However, our
analysis of SPB activity in eastern Texas,
USA, during 1957 to 1987 did not reveal
any statistically significant effects of cli-

matic variables on the rate of population
change (7 ). Time-series analysis indicated
that SPB fluctuations were driven primarily
by endogenous (density-dependent) fac-
tors: ;80% of the variance in the rate of
population change was explained by a joint
action of current and lagged population
densities. The evidence for second-order
dynamics [that is, delayed density depen-
dence; see (8) for the definition of process
order] was strong, because regression of the
rate of population change on lagged density
was highly significant (P , 0.0001) and it
alone explained 55% of the variance (7 ).
First-order endogenous factors (those that
act in an undelayed manner) or exogenous
influences are not unimportant; the former
may prevent oscillations from getting out
of hand, whereas the latter add stochastic
irregularity. However, to understand why
SPB populations oscillate, we should look
to those mechanisms that act in a delayed
density-dependent manner, because theory
states that lags in regulation promote the
possibility of cycles (9).

Several ecological mechanisms can gen-
erate second-order dynamics: maternal ef-
fects (10), food quantity (11) or quality (12),
pathogens (13), and specialist predators or
parasitoids (14, 15). Although time-series

analysis cannot distinguish between these al-
ternatives, it suggests how to formulate rival
hypotheses in quantitative and testable terms
[the predictions of the experiment described
below were published in (7)].

The question we addressed experimental-
ly was, what is the dynamical role of preda-
tion in the SPB cycle? A demonstration that
predators inflict substantial (or even over-
whelming) mortality at any particular point in
time does not tell us whether predators are
responsible for the oscillation or not. We
need to determine how the predator impact
changes with time, or more precisely, with
cycle phase. Three broad outcomes can be
distinguished, corresponding to the hypothe-
ses that predators are (i) an exogenous, (ii) a
first-order endogenous, or (iii) a second-order
endogenous factor (Fig. 1).

In the first case, there is no dynamical
feedback between prey density and the pre-
dation impact. The average predator-induced
mortality may be very high and still predators
would have no dynamical impact, simply re-
ducing the intrinsic rate of population in-
crease to a lower value. Fluctuations in pred-
ator-imposed mortality will affect prey den-
sity in a stochastic manner, but they cannot
drive a regular oscillation. In the second case,
predators respond to changes in prey popula-
tion without a significant lag time. The dy-
namical role of predators, therefore, is stabi-
lizing rather than causing oscillations (16).
Generalist predators may act in this manner,
reducing the amplitude of oscillations or pre-
venting diverging oscillations. Only in the
third case, when acting in a delayed density-
dependent manner, are predators actually
causing the oscillation. Note that the three
scenarios represent extremes of a continuum,
because it is possible for the predator com-
munity to act in a mixed manner (for exam-
ple, a mixture of generalist and specialist
predators would act in a manner intermediate
between cases 2 and 3).

To determine which of the three scenarios
(or some combination of them) characterizes

1Department of Ecology and Evolutionary Biology,
University of Connecticut, Storrs, CT 06269–3043,
USA. 2Department of Zoology, University of Hawaii,
Honolulu, HI 96822, USA. 3Southern Research Station,
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mail: peter.turchin@uconn.edu

Fig. 1. Possible dynamical effects of predation.
In all graphs, the dotted line indicates SBP
population density during the course of a single
oscillation, peaking in year 4. The solid line
indicates the survival rate that determines the
course of the oscillation (for simplicity, we
assumed fecundity to be constant). The broken
line indicates the survival rate when predators
are excluded, and the separation between the
solid and broken lines measures the predation
impact. (A) The expected or mean predation
impact does not vary with density. If predator
impact has a large stochastic component, then
predators will act as an exogenous factor; if
predation impact does not vary with time, then
predators are a null factor. (B) Predation acting
as a first-order process, with the greatest im-
pact occurring during the peak year. (C) Preda-
tion acting as a second-order process, with the
greatest impact occurring during the period of
population collapse. If predation were the dy-
namical factor completely responsible for pop-
ulation change, then the broken line in (C)
would be completely flat.

Fig. 2. Population numbers of the SPB (circles,
solid line) and one of its important natural
enemies, the clerid beetle Thanasimus dubius
(triangles, dashed line), during 1989 to 1994, as
measured by a network of pheromone-baited
traps within Kisatchie National Forest.
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the predation impact in the SPB system, we
performed a long-term study that measured
predation impact by experimentally exclud-
ing all natural enemies of the SPB (17). The
5-year-long study covered a complete in-
crease-peak-decrease cycle (Fig. 2). In 1990
and 1991 the survival of SPB brood inside
cages did not differ from that outside cages
(Fig. 3A), indicating negligible predation im-
pact during the increase phase (18). Predators
imposed detectable mortality during the peak
year (1992), but numerically the strongest
effect of predation was observed during the
first year of decline, 1993 (19). We observed
a qualitatively similar pattern in the effect of
predators on the SPB ratio of increase (Fig.
3B); but this measure of predation was
statistically significant during both decline
years, and not during the peak year. Thus,
both measures indicate that the predator com-
plex acts primarily as a second-order (that is,
delayed) process, with perhaps an admixture
of a weaker first-order impact. The second-
order effect is probably due to arthropod
natural enemies, including several species of
parasitoid wasps and predacious beetles (20).
One predator, the clerid beetle Thanasimus
dubius, appears to be a particularly promising
subject for further investigation. This preda-
tor is a specialist on bark beetles, capable of
inflicting significant mortality on SPB (21),
and its densities exhibit oscillations that are
phase-shifted with respect to those of SPB
(Fig. 2). A particularly interesting feature of
this predator is its tendency to go into an
extended diapause (22). It is known that long
developmental delays can have a destabiliz-
ing effect on dynamics (23, 24).

Our finding that predators in the SPB
system act as a second-order process should
be tempered by two caveats. First, our results
do not preclude the possibility that other
mechanisms (for example, maternal effects,
food quantity or quality, and pathogens) also
contribute to the delayed density-dependent
pattern of SPB dynamics. Nevertheless, given
the consistent and forcible impact of preda-
tors (50% decrease in survival and 50 to 70%

decrease in the ratio of increase), it is clear
that they play an important role in driving
SPB oscillations. A twofold survival differ-
ential per generation translates into a 32- to
64-fold differential per year (because there
are five to six SPB generations per year).

Second, our experiment was designed to
determine the dynamical role of the whole
predator complex. Thus, we do not yet know
which particular enemies play an especially
important role in causing SPB oscillations. Cur-
rently, our results implicate T. dubius as a par-
ticularly numerous and effective predator of the
SPB. However, the SPB is a native “pest” of
pines, and there is a diverse predator commu-
nity associated with it (20). Only continuing
empirical work coupled with modeling can
yield quantitative estimates of the relative im-
portance of different SPB predators.

Ecologists have used three general ap-
proaches to investigate potential mechanisms
that can explain population cycles: general
ecological theory based on mechanistic mod-
els (25, 26), analyses of time-series data (8),
and field experiments (27, 28). No single
approach in isolation can resolve the issue of
why a particular population exhibits density
oscillations. As our study and another recent
study (28) illustrate, greatest progress may be
achieved when all three approaches are used
synergistically in investigations of population
cycles.
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Common Dynamic Structure of
Canada Lynx Populations Within

Three Climatic Regions
Nils Chr. Stenseth,1,2* Kung-Sik Chan,3 Howell Tong,4,5

Rudy Boonstra,1,6 Stan Boutin,7 Charles J. Krebs,1,8 Eric Post,2

Mark O’Donoghue,8,9 Nigel G. Yoccoz,1,10

Mads C. Forchhammer,11,12 James W. Hurrell13

Across the boreal forest of Canada, lynx populations undergo regular density
cycles. Analysis of 21 time series from 1821 onward demonstrated structural
similarity in these cycles within large regions of Canada. The observed popu-
lation dynamics are consistent with a regional structure caused by climatic
features, resulting in a grouping of lynx population dynamics into three types
(corresponding to three climatic-based geographic regions): Pacific-maritime,
Continental, and Atlantic-maritime. A possible link with the North Atlantic
Oscillation is suggested.

Periodic population fluctuations of the Can-
ada lynx (Lynx canadensis) have greatly in-
fluenced both ecological theory and statistical
time series modeling [(1, 2); see (3) for a
summary]. Recent analyses have focused on
the extent of synchrony in population fluctu-
ations, assessing the importance of external
abiotic factors (such as weather) and internal
biotic factors (such as dispersal among pop-
ulations) in causing spatial patterns (4). Such
empirical and theoretical approaches have,
however, assumed that the populations were
structurally similar [that is, the density-de-
pendent relationships are identical among
populations (5)]. This assumption has never
been thoroughly evaluated. To do so requires
determining whether the lynx populations
display the same phase- and density-depen-
dent structure (3) and then searching for sim-
ilar underlying causes of the observed dy-
namics. Using new statistical methods devel-
oped for this purpose (6), we ask to what
extent the time series on the Canada lynx
(Fig. 1) compiled by the Hudson Bay Com-
pany for the period 1821 to 1939 (7) and the
corresponding more modern time series com-

piled by Statistics Canada for the period 1921
to present (8), taken together, are structurally
similar. Specifically, we ask whether the
phase- and density-dependent structure of
changes in lynx abundance cluster into
groups defined according to ecological-based
features (9) or according to climatic-based
features (10, 11).

The available time series (Fig. 1A) cover
two ecosystems (referred to below as ecolog-
ical regions): the northern, open boreal forest
(Fig. 1B) and the southern, closed boreal
forest. In western Canada, the mountainous
topography adds complexity. Additionally,
the series cover three climatic regions defined
by the spatial influences of the North Atlantic
Oscillation (NAO) [Fig. 1C; see (12)], which
may contribute to spatial differences in tro-
phic interactions (13).

Previously, we fitted a piecewise linear
autoregressive model (14) to each of the
series (3). A general hare-lynx model (3, 15)
may be expressed as an equivalent model in
delay coordinates of the lynx (the species for
which we have data). Here we check whether
all the time series, or some subsets of these,

display the same underlying phase- and den-
sity-dependent structure. For this purpose we
use a piecewise linear model (14, 15):

ys,t 55 bs,1,0 1 bs,1,1ys,t21 1 bs,1,2ys,t22 1 «s,1,t ys,t2d # Us

bs,2,0 1 bs,2,1ys,t21 1 bs,2,2ys,t22 1 «s,2,t ys,t2d . Us

(1)

where ys,t is the log-transformed abundance of
lynx at site s and for year t [that is, ys,t 5
log(Ys,t) where Ys,t is the abundance of lynx at
site s and in year t, and where s 5 1, 2, . . . ,
represent the sites corresponding to the individ-
ual time series; see Fig. 1A]; bs,i,j are the sta-
tistical parameters that determine the phase-
and density-dependent structure of the system (i
5 1 and 2 correspond to the lower and the
upper regimes of the model; j 5 0, 1, 2 corre-
spond to the constant term, the first lag, and the
second lag, respectively) at site s; εs,i,t is nor-
mally distributed, time-independent noise
[N(0,s2

s,i)]; and us is the threshold applicable to
the log-transformed density d years earlier.
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